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Einstein 1910 (reversal of Boltzmann formula):

For any two independent systems A and B,

the likelihood function should satisty

Q(A+B)=Q(A) Q(B) (Einstein principle)

g=1: S,.=k,InW hence Q({p})ece™"V* hence
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COMPOSITION OF VELOCITIES OF INERTIAL SYSTEMS (d=1)

V.=V +V,, (Galileo)

1
V. +V
v, =—2—2 (Einstein)
13
1_|_V12 V13
cC C

Newton mechanics:
It satisfies Galilean additivity but violates Lorentz invariance (hence
mechanics can not be unified with Maxwell electromagnetism)

Einstein mechanics (Special relativity):
It satisfies Lorentz invariance (hence mechanics is unified with Maxwell
electromagnetism) but violates Galilean additivity

Question: which is physically more fundamental, the additive composition
of velocities or the unification of mechanics and electromagnetism?



Special relativity recovers Newtonian/Galilean mechanics
as particular case:

V. +V
V. =—E—5 —y 4y
13 vV VvV 12 23
1_|_ 12 13

c C
if 1/c—>0 or V1/c#0 withv/c—0

q - statistics recovers Boltzmann-Gibbs statistics

as particular case:
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if (g-1)>0 or V (q-1)#0 with BE—0




TRIANGLE FOR INDEPENDENT COINS
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HYBRID PASCAL - LEIBNITZ TRIANGLE
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q=1SYSTEMS

ie., suchthat S,(N)o< N (N — o)
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| don’t believe that atoms exist!

Ernst Mach (January 1897, Vienna)
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(All three examples strictly satlsfy the Leibnitz rule)
C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)
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Asymptotically scale-invariant (d=2)
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(It asymptotically satisfies the Leibnitz rule)

C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)



q #1 SYSTEMS
ie., suchthat S (N)o< N (N — oo)
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(All three examples asymptotically satisfy the Leibnitz rule)

C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)



An entropy S functional is additive if (and only if),

for any two probabilistically independent systems 4 and B,
S(A+B)=85(4)+S(B)

ie., if p*** :PiAPf G=L2,..W; j=12,...,W,), then

l,]

s({e Y =s({p'})+s({p}})

Property of S :
S () =2 () (2 < £y | B0

S (A+B S,(AD [ 5, (B
14 (1—0) o k+ ):[H(l—q) q](c )} l+{d-9) q/(c )}

S,(4+B)_S,(4) S,B) )Sq(_A) S (B)
k k k D Tk

ie, S (A+B)=S, (4)+S (B)+ I_Tq S, (4)S, (B)

—

therefore S, is nonadditive unless (1-¢)/k — 0



GENERALIZATION: 4 and B either independent or correlated =
S q(A+B) S q(A) S ] (Bl|A4) S (A) S (B|4)
A = + +(1 : !

k k k k k
S,(B)  S,(A4|B) S,(B)S,(AB)
— 4 + el X 4+ 1_ 1 d v
p P (1-9) . . (Vq)
Entropy of (A+B) [S. Abe, Phys Lett A 271 (2000) 74]

(calculated with joint probabilitie
Conditional entropy of A (calculated

Entropy of B (calculated with conditional probabilities)

with marginal probabilities)
For a special class of correlations, a value of g (noted g,,,)

exists such as
S, (A+B)=S§, (A)+S, (B) (extensivity)
Independence implies:
S,(A1B)=S,(4) (Vq)
S,(Bl4)=S,(B) (Vq)
Qons =1



SANTOS THEOREM: RJV Santos, J Math Phys 38, 4104 (1997)

(g -generalization of Shannon 1948 theorem)

IF S({p,}) continuous function of {p,}

AND S(p, =1/W, Vi) monotonically increases with W

S(A+ B) _ S(A) N S(B) +(—g) S(A) S(B)
k k k

AND S({p})=S(p,.p)+p.7 SUp /o )+ Py SUp, ! Py}) (Withp, +p, =1)

AND

(with pi**’=p'p,*)

THEN AND ONLY THEN

W
I—Zpiq

S({pi})=k? (q=1 = S({pi})=—k2pl-1np,~)

CE SHANNON (The Mathematical Theory of Communication):
"This theorem, and the assumptions required for its proof, are 1N NO Way necessary for

the present theory. It is given chiefly to lend a certain plausibility to some of our later definitions.

The real justification of these definitions, however,will reside in their
implications.



ABE THEOREM: S Abe, Phys Lett A 271, 74 (2000)

(g -generalization of Khinchin 1953 theorem)
IF S({p,}) continuous function of {p,}

AND S(p, =1/W, Vi) monotonically increases with W

AND S(p, Prseees Py, 0) = S(P, Poseees Py)

S(A+B) _ S(4) N S(B|A) +(1-q) S(A) S(B| A)
' k ’ ' k

where S(4+B)=S({p;""})

U

anffr]

EMW%V&H

i
= p!
S(B| A)=—"— q ]
> (')
i=]
THEN AND ONLY THEN

l—,z’:p.q
2 i=

S(Uipy) =k

AND

"
I (q=l = S({pl})z—kzpllnpl
q-= i=]

The possibility of such theorem was conjectured by AR Plastino and A Plastino (1996, 1999).



Shore and Johnson axioms (1980)

(1) Uniqueness says that the function H({p;}) must be
convex, so that there will only be a single maximum, i.e., a
single set of values {p7}.

(2) Coordinate system invariance says that predictions
made from an inference should be independent of the
choice of coordinate system. It is relevant when the prob-
abilities are continuous functions and determining the
dependence of H on the prior over p;.

(3) Subset independence says that if probability p; of
bin k increases by ép and the probability p j of bin j
correspondingly decreases by o p, then no other bins are
affected by the change. Subset independence yields the
relationship

H = Zf(Pk) + G,
k

where C is a constant independent of p;.

(4) System independence says that bringing together two
systems having probabilities u = {u;} and v = {v;} gives
new bins that have probability p = u X'v, where p;; =
u;v;. The systems are considered independent if
constraints on the data do not couple them.

Presse et al, PRL 111, 180604 (2013)



week ending

PRL 111, 180604 (2013) PHYSICAL REVIEW LETTERS 1 NOVEMBER 2013

Nonadditive Entropies Yield Probability Distributions with Biases not Warranted by the Data

Steve Pressé,l’* Kingshuk Ghosh,2 Julian Lee,3 and Ken A. Dill*
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Different quantities that go by the name of entropy are used in variational principles to infer probability
distributions from limited data. Shore and Johnson showed that maximizing the Boltzmann-Gibbs form of
the entropy ensures that probability distributions inferred satisfy the multiplication rule of probability for
independent events in the absence of data coupling such events. Other types of entropies that violate the
Shore and Johnson axioms, including nonadditive entropies such as the Tsallis entropy, violate this basic
consistency requirement. Here we use the axiomatic framework of Shore and Johnson to show how such
nonadditive entropy functions generate biases in probability distributions that are not warranted by the
underlying data.

Shore and Johnson axioms 1980 mandate
Boltzmann-Gibbs-Shannon entropy... . ‘
hence they need to be generalized!!!

Compromise of mathematics is with logics.
Only when nature ‘likes it’, mathematics
becomes theoretical physics!
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Euclid set of axioms including his celebrated 5" postulate
yields the magnificent Euclidean geometry

Violation of the 5" postulate yields Riemannian geometries
Carl Friedrich Gauss 1813
Ferdinand Karl Schweikart 1818
Janos Bolyai 1830

Nikolai lvanovich Lobachevsky 1830
Bernhard Riemann 1854

If we stubbornly insisted that the 5t" postulate was
not proposed by Euclid but was mandated by God,

then General Relativity would not exist! ®



PREDECESSORS
RENYI ENTROPY o InY p? :

M.P. Schutzenberger, Publ. Inst. Statist. Univ. Paris (1954) [according to 1. Csiszar (1974,1978)]
A. Renyi, Proc. 4" Berkeley Symposium (1969)
ENTROPY o 1= p!:
i

J. Harvda and F. Charvat, Kybernetica 3, 30 (1967)
I. Vajda, Kybernetica 4, 105 (1968)
Z. Daroczy, Inf. Control 16, 36 (1970)
J. Lindhard and V. Nielsen, Det Kongelige Danske Videnskabernes Selskab
Matematisk - fysiske Meddelelser (Denmark) 38 (9), 1 (1971)
A.M. Mathai and P.N. Rathie, Basic Concepts in Information Theory and Statistics . Axiomatic
Foundations and Applications (Wiley Halsted, New York, and Wiley Eastern, New Delhi, 1975)
B.D. Sharma and D.P. Mittal, J. Math. Sci. 10, 28 (1975) [unification of both previous entropic forms]
A. Wehrl, Rev. Mod. Phys. 50, 221 (1978)
q—GAUSSIANS (also called kappa - distributions or generalized Lorentzians):

Gaussian distribution Abraham de Moivre (1733)

Pierre Simon de Laplace (1774)

Robert Adrain (1808)

Carl Friedrich Gauss (1809)
Cauchy-Lorentz-Breit-Wigner distribution Agustin Louis Cauchy (~1821)

Hendric Antoon Lorentz (~1880)
Student's t-distribution William Sealy Gosset (1908)
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Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

Filippo Caruso’ and Constantino Tsallis™
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The Boltzmann—Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L%, Here we show, for d=1,2, that the (nonadditive) entropy S, satisfies, for a special value of g # 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., SqOCLd. Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,

Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked
by a maximum of the special entropic index gq.



SPIN %2 XY FERROMAGNET WITH TRANSVERSE MAGNETIC FIELD:

N —

H=-> [(14+7)6567, +(1—y)56%, | +2\67]
j=1

7 =1 — Ising ferromagnet

O0< |y| <1 — anisotropic XY ferromagnet
y =0 — isotropic XY ferromagnet

A = transverse magnetic field

L =length of a block within a N — oo chain

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)



P, = ground state (7' =0) of the N-system
(assuming AV = +0)

= py=py=Trp; =1

=> P, 18 a pure state

=S5, ,(N)=0 (Vq, VN)

In contrast, p, =Tr,_, p, satisfies Trp; <1

= p, 1s a mixed state
=S, (N,L)>0



ISING MODEL
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F. Caruso and C. T., Phys Rev E 78, 021101 (2008)



Using a Quantum Field Theory result
in P. Calabrese and J. Cardy, JSTAT P06002 (2004)

we obtain, at the critical transverse magnetic field,

V9+¢* =3

C

qent —

with ¢ = central charge in conformal field theory

Hence
: : : 1
Ising and anisotropic XY ferromagnets = ¢ = 5 = q,, = J37-6 =0.0828
and
Isotropic XY ferromagnet = ¢c=1 = g¢q,, = J10-3 =0.1623

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)



Block entropy for the d=7+1 model, with central charge c, at its quantum

phase transition at 7=0 and critical transverse “magnetic” field
| ' | ' | ' |

108 BG -
q A
0.8 : .
analytically obtained
from first principles |
0.6 .
VI+c¢? -3
B q = i
04 c
021 AY | -
Ising
O 1 ] 1 ] 1 ] 1 ] 1
0 0.5 1.0 1.5 2.0 1/c
Self-dual Z(n) magnet (n =1,2,...) [FC Alcaraz, JPA 20 (1987) 2511]
Se=217D 69

n+?2

SU(n) magnets (n=1,2,...; m=2,3,...) [FC Alcaraz and MJ Martins, JPA 23 (1990) L1079]
n(n+1)

(m+n-2)(m+n-—1)

%c:(n—l)[l— }E[O,n—l]



BE CAREFUL!!! A

For d =1 quantum system with central charge ¢, we have

_E _ c/3
SBG—BlnL+lnb+...—ln(bL J+..

V9+c* -3

C

and the extensive entropy is 5_ with q=

But if we (wrongly) assume equal probabilities, we will
(wrongly) use S, =InW , hence W ~bL".
This corresponds to the power-law class, whose extensive

entropy is Sq with g=1- §, which is definitively wrong!!!
C
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S (L,N)
O<limlim —

L—00 N—>co L

< oo

le.,
Sq(L,N)ocL (N>>L>>1)

N = total number of particles of the d =1 system

L = total number of particles of the subsystem

g=1- L (m=1,2,..; k=0,1,2,..; m—k =3)
m-—k
m= number of internal degrees of freedom per particle
(e.g, m=2s; s=spinsize=1/2,1,3/2,..)

k =number of fundamental-state vanishing magnons
Carrasco, Finkel, Gonzalez-Lopez, Rodriguez and Tempesta, JSTAT (2016)
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N
Hieis = ) _ JiSi* Sisy
i=1

where {J;j} are random exchange couplings obeying a probabil-
ity distribution P(J) and (S;} are spin-S operators, with periodic
boundary conditions



(d=1; T=0)

(pure magnet with critical transverse field)
N9+ -3

VAR

| | -\.‘\ | .| . | . | l/c
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~
x.\
~
~
~
~
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S i : ™~
1 c In 25 +1) \.~.

(random magnet with no field)
A Saguia and MS Sarandy, Phys Lett A 374, 3384 (2010)



q— PRODUCT:

L. Nivanen, A. Le Mehaute and Q.A. Wang, Rep. Math. Phys. 52, 437 (2003)
E.P. Borges, Physica A 340, 95 (2004)

The g - product is defined as follows:
1
x® y= [xl_q + ' —I}E
Properties :
i) x® y=xy
ii) In (x®_y)=In_x+In_y (extensivity of Sq)

[whereas In (x y)=In_x+In_y+(1—-g)(In_ x)(In_ y)]
(nonadditivity of Sq)



